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Abstract

The general Tarasov function is fitted to the skeletal heat capacities of materials with
widely different crystal structures. Examples are chosen from flexible macromolecules (poly-
ethylene, polypropylene, poly(ethylene terephthalate). selenium, rigid macromolecules (dia-
mond and graphite), and a small molecule (fullerene, Cqp). A new optimization approach using
the Mathematica™ software is developed. It results in one-, two-, and three-dimensional De-
bye temperatures, 8, &, and O, the fitting parameters of the Tarasov function. In addition to
the Tarasov function, the evaluation of the heat capacities makes use of approximate group-vi-
brational spectra. The results support the earlier assumption that ©,=0, for simple, solid, lin-
ear macromolecules. In more complicated bonding situations, @;, @, and ©, are used as aver-
aging fitting parameters. This general approach provides an improvement in the quantitative
thermal analyses of polymers and other substances includad in the ATHAS Drata Bank. Suffi-
cient programming information is provided to enable anyone the computation with a copy of
the popular Mathemartica™ sofiware. The programming file is also downloadable from the
WWW.

Keywords: diamond, fullerene, graphite, heat capacity, polyethylene, poly(ethylene terephiha-
late), polypropylene, seleniuim, solid state, Tarasov equation, vibrational spectra

Introduction

A general description of the heat capacity of macromolecules and complex,
small molecules in the solid state is rather ditticult it one wants to cover a large
range of temperature. This problem has been addressed frequently {1-4]. To ap-
proach reality, models for the macroscopic, measured heat capacity must estab-
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lish a link to the microscopic molecular motion as expressed by its vibrational
spectrum. At lower temperatures, vibrational motion provides practically the
only contribution to the heat capacity. As the temperature increases, large-ampli-
tude conformational, rotational, and translational motions may also add to the
heat capacity. The deviation of the measured heat capacity from the baseline of
the vibrational contribntions permits the assessment of the large-amplitude mo-
tions, responsible for most changes in mechanical properties. In addition, it per-
mits a quantitative identification of broad glass, melting, and disordering transi-
tions. Tharefare, calenlation of the vibration—only heat capacity is crucial for
quantitative thermal analysis. The full vibrational spectrum, however, is often
not available and never sufficiently precise in the low-frequency region for an in-
version to heat capacity. Hence, a series of approximations have been developed
for computation of heat capacities of sufficient precision. All approaches are
based on the classical Einstein [5] and Debye treatments [6]. The heat capacity
of many simple solids, such as metals and salts can even be described by a single,
three-dimensional Debye function with only one parameter, the Debye tempera-
ture @p [7]. For more complicated, covalent molecular structures more detailed,
full, albeit approximate. vibrational spectra are necessary and must be treated as
first proposed by Born and von Karman [8].

Using the Advanced Thermal Analysis System (ATHAS) we have been suc-
cessful in describing the heat capacity of solid. linear macromolecules using an
approximation of the vibrational spectrum [9]. In this approach the vibrational
heat capacity at low temperatures is arbitrarily separated into two independent
contributions: one, the low-frequency portion, coming from the skeletal; the
other, the high-frequency portion, from the group vibrations. The former is ap-
proximated by the simple Tarasov function that describes heat capacities of chain
molecules with two parameters, the characteristic temperatures &, and &, [10].
The latter is derived from the known group vibrations, inverted to heat capacities
using the Einstein function for narrow distributions of frequencies and a combi-
nation of Einstcin functions and simple box-distributions for broader frequency
regions [11]. Information on thermodynamic properties of currently nearly 250
linear macromolecules and small molecules have been assessed using this ap-
proach and are collected in the ATHAS Data Bank [12].

The heat capacities of diamond, graphite, and selenium have been charac-
terized [13] using more general forms of the Tarasov functions [14]. For exam-
ple, in order to fit the skeletal heat capacily of graphite, the Tarasov equation was
used as a combination of two- and three-dimensional Debye functions (charac-
teristic temperatures &, and @;). Multiple Tarasov functions were used for the
distincdon between two- and three-dimensional crystal structures of group IV
chalcogenides [15]. Better fits of the skeletal heat capacities can naturally be
achieved using more fitting parameters. The general Tarasov equation [14], for
example, involves a combination of one-, two-, and three-dimensional Debye
functions (three fitting parameters, 0,, ©;, ©;). Separate Tarasov functions for
longitudinal and transverse vibrations can further double these parameters [15],
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and choosing independent numbers of vibrators in the general Tarasov equation
can lead up to five fitted parameters for a single Tarasov fit (O, &2, O3, Ny, Nz,
Ny, with N|+N,+N,=total number of skeletal vibrations, Ns). Previously such
multiple parameter fitting was done by trial and error because of difficulties in
the inversion of the Debye function that cannot be integrated in closed form. A
fitting scheme that can be extended to multiple parameters will be described in
this paper, making use of the general Tarasov equations. The results will be dis-
cussed in light of the known properties of frequency spectra. As examples, we
consider diamond, graphite, and fullerene (Cy) as examplec of the large struc-
tural variation possible among the allotropes of carbon, and several flexible mac-
romolecules: polyethylene (PE), polypropylene (PP), poly(ethylene terephtha-
late) (PET), and selenium (Se). Combinations of small and large motifs within
the same molecule, as are found in stiff-chain macromolecules will be discussed
separately in a later publication. '

In an Appendix, the general computer program is given, prepared in Mathe-
matica™ programming tanguage [16]. This program can also be found in and
downloaded from our World Wide Web home page [17] and run on personal com-
puters with existing Mathematica'™ software [18].

Calculation of the heat capacity for the solids

Calculation of the vibrational heat capacity is based on low-temperature, ex-
perimental heat capacity at constant pressure, Cp(exp). These are converted to
ligat capacity at constant volume Cy(exp) using the standard thermodynamic re-
lation involving compressibility and expansivity. If these additional experimen-
tal data are not available, one can make use of the Nernst-Lindemann approxima-
tion [19, 20]:

G,

Cplexp) — Cv(exp) = 3RA°Cv(cxp) /T (D

where A,, is close to a universal constant and can be taken as =0.0039 K mol J™';
T is the temperature; T, the equilibrium melting temperatore; and R, the gas
constant.

Assuming that Cy(exp) contains only vibrational contributions, it can be
separated into the heat capacities from group vibrations Cy(gr) and skeletal vi-

brations Cy{sk):
Cyl(exp) = Cvlgr) + Cv(sk) (2)

The Cy{gr) is computed using frequency spectra obtained from the analysis of in-
frared and Raman spectra and is, for computational purposes, further divided as
follows:

Cv(gr) = Cy(box) + Cv(Einstein) (3)
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where Cy(box) is the part of the heat capacity linked to parts of the spectrum rep-
resented by box-like distribution functions, and Cv(Einstein) is the heat capacity
contribution best approximated by separatc Einstcin modes. For the latter one
can write:

(O /T oxp(Or/T)
2

[exp(@r/T)-1Y @

Cv(Einstein YNR = ZE(G)E/T) =

with @g=hv/k, representing the given Einstein frequencies in kelvin, and # and &
are Planck’s and Boltzmann’s constants, respectively. A typical collection of
Einstein modes is schematically shown in Fig. 1A. It represents the 4.59 Einstein
modes of polyethylene listed in Table 1.
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Fig. 1 (A) Frequency spectrum of the Einstein modes of Table 1; (B) The same for the box
distributions in Table 1; (C) Schematic of the frequencies distribution of the general
Tarasov function, Eq. (6)

The expression Cy(box) is given by a sum over the identified areas of the vi-
brational spectrum which can be represented by box-like spectra, as illustrated in
Fig. 1B for polyethylene. The five frequency regions are listed also in Table 1.
Each box is represented by a sum of one-dimensional Debye functions D, and
corresponds to uniformly distributed vibrations within the frequency interval
from Outo @, [11]:

By
Gy

Cv(box)/NR = B(OW/T.0/T) = [D1(@w/D—~(O/Bu)D1(OVT)]  (5)

After subtracting the group vibration contributions from Cv(exp), the experi-
mental Cyv(sk) remains and is fitted at low temperatures to the general Tarasov
function T [13, 14]:

Cyv(sk)/NR = T(O/T,0,/T,0:/T) =
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D1(0/T) — (0/01)[D1(OxT) — D2(Bx/T)] - (03/0,0,)[D2(04/T) — D3(0/T) (6)

to obtain the three characteristic parameters @, ©,, and ©; that represent the
maximum frequencies of the corresponding distribution. Figure 1C illustrates
the frequency distribution of Eq. (6) for an arbitrary set of parameters. The func-
tions Dy, D; and D5 are the one-~, two-, and three-dimensional Debye functions,
respectively [6, 21]:

J ((")/T) *exp(&/T) 4

Cu/NR = Dl(em—m@) (©/m %)
s [exp(&/T) — 117

CVNR = Da(@y/T) = 2178 sz M( orr) ($)
s [exp(/T) - 11

Cv/NR = D3(O3/T) = 3(T/03 )*J (em “exp(©/7) 1d(O/T) 9

o [exp(©/T) - 1]

where N denotes the number of the vibrational modes for the frequency distribu-
tion. Figure 2 illustrates the three frequency distributions of the Debye functions.
It is of interest to note that the combinations of the three Debye functions for the
general Tarasov function, shown in Fig. 1C, are chosen such that each section of

Table 1 Approximate Frequency Spectrum for Polyethylene Group Vibrations®

Vibration type Frequency in K Number of Vibralurs
CH, asym. stretch oy 4148.1 1.00
CH, sym, stretch O 4097.7 1.00
CH, bending O 2074.7 1.00
CH, wagging 6,.0, 1698.3, 1976.6 0.65
CH, wagging O, 1976.6 .35
CH, twisting/rocking @,,0, 1689.6, 1874.3 0.48
CH, twisting/rocking 0, 1874.3 0.52
C-C-stretching 0,6, 1377.6, 1637.5 0.34
C—C-stretching 0.0, 1377.6, 15254 0.35
C~C-stretching =8 1525.4 0.31
CH, rocking/twisting e, 1494.1 0.04
CH, rocking/twisting 0,0, 1038.0, 14941 0.59
CH, rocking/twisting O 1079.1 0.37

 Fitted to dispersion curve of J. Barnes and B. Fanconi, J. Phys. Ref. Data, 7 (1978) 309.
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the lower frequency distribution which is replaced by a higher-level Debye func-
tion has the same number of vibrators as the lower-level Debye function would
have had in this frequency region on extension to zero. By this assumption the
number of fitting parameters is reduced from five to three, as pointed out above.

3
pY) pIY) ©
A Frequency [K] B Frequency [K]
Y] 8
C Fraquency [K]

Fig. 2 Frequency distributions for {A) one-dimensional, (B} two-dimensional, (C) three-di-
mensional Debye Functions (Eqs (7)-(9))

The optimization method used to obtain @, &, and @s is based on minimizing
the chi-square statistic function (x°):

2
Cv(sK)exp(Ti) = cv(sk)caic(Ti,es,ez,el)} (10)

2

X —g o
where ; is the standard deviation of the experimental data taken at temperatures
T;. Low values of f correspond (o an overall better fitting of the calculated heat
capacity to the experimental data. The numerical minimization is conveniently
performed with a personal computer within the programming language of
Mathematica™ [16] by the built-in function FindMinimum, and therefore, is -
particularly easy to use. Another advantage is that all three Debye functions are
calculated within the Mathematica' " software with help of the Jouquiere func-
tion and the Riemann zeta-function. Such method of fitting was discussed be-
fore, but based on a main-frame computer program using the Fortran Math Li-
brary of the Numerical Algorithm Group (NAG), not easily available for every
thermal analyst [22].

The values of ©,, ©; and ©; which best fit the experimental data can then be
used to obtain the calculated heat capacity at constant volume Cy{calc) as the
sum of the skeletal and group contributions, as indicated in Eq. (2). The Cv(calc)
is finally converted back to Cp(calc) with Eq. (1), to obtain the vibration-only
heat capacity over a temperature range exceading the fitting range.

The new approach to link heat capacity to the vibrational spectrum is more
general than used previously in the ATHAS analysis for polymers and it elimi-
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nates the trial-and-error fitting of the ©-temperaturesas shown schematically in
Fig. 3. For all linear macromolecules it was assumed that ©,=6;, so that the gen-
eral Tarasov Eq. (6) reduces to:

Cv(sk)NR = T(@/T,0+T) = D1(©1/T) — (©3/01)[D1(8:/T) - D3(€3/1)] (11)

as originally proposed by Tarasov for chain molecules [1, 10, 23]. The possibility
of a significant contribution to the heat capacity of vibrations distributed as in a
two-dimensional continuum was thus excluded. The other possible simplifica-
tion, using Eq. (6) without the one-dimensional continuum, was applied when
discussing layer structures [10, 15, 23-25]. In this case @, is assumed to be equal
to ©,, eliminating the one-dimensional contribution in Fig. 1C.

Experimental Cp

Skeletal
AO vibrations

iﬂw alvgz»aa T ok
A 6, g‘»‘w

Group
vibrations i
tables &
compied :
from IR and ¥
Raman data Computed Cp,

Fig. 3 ATHAS Scheme for the calculation of heat capacities of solids

At very low temperatures all Tarasov functions coincide with the three-di-
mensional Debye function and lead to the well-known T’ temperature depend-
ence of the heat capacity:

3
Bp= V616;:0; (12)

The pure one-, twao-, and three-dimensional Debye functions, as given in Eqs
(MH—(9), are recovered from Eq. (6) with ©=0;=0, ©:=0 and ©,=0-, and
0,=0,=0;, respectively.

Results

Four polymers: PE, PP, PET, and selenium and three allotropes of carbon: dia-
mond, graphite, and fullerene (Cgo) were analyzed using the new optimization
approach of the general Tarasov Eq. (6) as detailed in the Appendix. The experi-
mental data of Cplexp), the parameters for Eq. (1), and the approximale group vi-
bration spectra were taken from literature and from the ATHAS data bank [12].
For PE, Cy(exp) and the group vibrational spectrum, as listed in Table 1, agrees
with the data used in Ref. [20]. For PP Cp(exp) and the group vibration approxi-
mation were derived first in Ref. [27], and for PET, in Ref. [28]. The temperature
ranges of the fitting of the experimental data to Eq. (6) are listed in Table 2.

J Thermal Anal, 52, 1998
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Table 2 Results of ©, ©,, O, fit and parameters that have been used for the €, calentation®

Sample and range N, Ny T/ o/ Q,/ Q.
of temperature fit () (#) K K K K
PE 7 2 414.6 5475 146.7 146.7
(0.1-270 K) (519 (158)°
PP 20 7 4607 711.8 127.5 50.6
(10-460 K) 712.8 (T14)° 100.5 (91)
PET 51 15 553 5447 48 48
(5-250 K) (586)° 44y’
Selenium 0 3 4042 383 72 72
(1.5-300 K) (3500° 98"
Diamond 0 3 3830 1721 1721 2131
(LU—1100 K) 0 3 3830 18808
(2050)"
Graphite o 3 3950 2571 932 6.0
(0.5-1500 K) 0 3 3950 1878 (1370)  0.02 (37’.5)i
Fullerene, C,, 174 6 1000 83.9 20.7 20.7
(4-40 K) (33)°
* from Eq. (6), in the sub- ® from Eq. (11),126] & from Eq. (9}
cequent rows other equa- ®from Eq. (11), [27] * from Eq. (9, [7]
tions are explored, values ¢ from Eq. (11),[28] 1 from Eq. (14), [13]
in parentheses ate for ®from Eq. (11), [21] I estimate given in {29]
comparison to literature f sublimation temp. ¥ from Eq. {9, [30}]

Experimental heat capacities for diamond and graphite were taken from the
critical evaluation of the literature in Ref. [13]. The recommended data for
Cylexp) of Ceo were taken from Refs [29-31) and the group vibration spectra
from Refs [32, 33].

The total number of vibrators (3N) were separated into the number of group
vibrations (Ng) and skeletal vibrations (Ng) as listed in Table 2. For example,
polyethylene has a total of nine degrees of freedom per (CHy—) repeating unit. Of
these 7 were taken as group vibrations, and the remaining 2 are skeletal {4]. For
graphite, diamond and selenium with one-atomic motifs, on the other hand, all of
the normal modes are initially taken to be of the skeletal type. With fullerene, in
contrast, the crystal motif is Ceo, with all internal bonds similar to graphite. This
leads to 174 group vibrations and 6 skeletal vibrations [29].

All results of the fittings with the ranges of temperature used are listed in Table 2.
The calculated vibrational heat capacities Cy(calc) and Cy(calc) using the best-
fit values of ©,, ©, and @, are shown in Figs 4-10. The separate skeletal and
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Fig. 4 Cxperimental and calculated heat capacitics of crystallinc PE with Eg. (G)
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Fig. 5 Experimental and calculated heat capacities of crystalling PP with Eq. (6)

group contributions and the measured heat capacities Cy(exp) are also indicated.
The RMS errors of the experimental data from the calculated values of Cp{calc)
are always Iess than 3%, the usually assumed precision of the experimental data.

Discussion

The development of a detailed fit of the heat capacity of solids to an approxi-
mate function of the densities of vibrational states has gone through many stages
of development. Until the present program was created, any laboratory interested
in linking heat capacities to vibrational spectra had to develop rather extensive
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Fig. 6 Experimental and calculated heat capacities of crystalline PET with Eq. {6)
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Fig. 7 Experimental and calculated hent capacities of trigonal Se with Eq. (6)

computational capabilities. The early discussions were based on manual compu-
tations based on tables of the Einstein [34], one- [4], two- | 15], and three-dimen-
sional [35] Debye funtions. This was followed by full main-frame computer pro-
grams for the inversion of heat capacity to the Tarasov parameters for polymers,
Eg. (11) [11, 21]. Such inversions still needed empirical selection of the theta-
temperatures and trial and error fitting, based on the constancy of the theta-tem-
peratures over the analyzed temperature ranges, to be checked by subsequent er-
ror calculations. Recently a complete best fit resulting of @, and ©; with respect
to the smallest error in heat capacity was developed [22]. The here presented pro-
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Fig. 8 Experimental and calenlated heat capacities of diamond with Eq. (6)
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Fig. 9 Experimental and calculated heat capacities of crystalline graphite with Eq. {6)

gram, gri&ren in the Appendix, lets anyone with a modest investment in the Mathe-
matica  software do the fitting of heat capacities for any type of combinations
of Tarasov, Debye, and Einstein models. It is hoped that this will make the quan-
titative interpretation of thermal analysis a much wider applied practice.

The meaning of the approximate vibrational spectra, as displayed in Figs 1
and 2, is obvious for the group vibrations (Figs 1A and B). The chosen approxi-
mations are to follow as closely as necessary the actual density of vibrational
states. Above about 400 K, which corresponds to about 300 cm ™, it becomes pos-
sible to approximate the detailed spectrum by box distributions and Einstcin
functions because the heat capacity vs. temperature curves increase in broadness
with increasing frequency parameters. The often very precisely known group vibra-
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Fig. 10 Experimental and calculated heat capacities of fullerene with Eq. (6). (A) Low tempera-
ture data; (B) Complete temperature region

tional spectra can thus be simplified as shown in Figs 1A and IB. Of the three De-
bye functions of Fig. 2 only the three-dimensional function (Fig. 2A) is known to
match the low-frequency (acoustic) spectrum of crystalline solids. Its derivation
is based on the assumption of an isotropic solid [6]. The more anisotropic the
solid, the more does the actual frequency distribution deviate at higher frequen-
cies from Fig. 2A. The method of separation of the group vibrations from the
skeletal vibrations in Eq. (3) corrects for most of this anisotropy introduced by
the chemical structure. The initial idea that the Figs 2B and C would similarly
correspond to the molecularly two- and one-dimensional molecular structure is
not verified, as pointed out earlier [13]. The atomic motion of layer structures
and chains is in general not carried out in two and one dimension, and even the
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strictly two- and one-dimensional vibrations show maxima at the high-tempera-
ture end of the distribution curves [2, 13]. Only the center part of the distributions
of Figs 2B and C can, thus, be hrought into gaod correspandence with the trme
spectra. The general Tarasov equation of Eq. (6) must thus be looked upon as a
model that fits the lowest, three-dimensionally isotropic, acoustic vibrations
(Debye’s T law of heat capacity at low temperatures) and approximates the
higher, less isotropic frequencies with a ramp and a box distribution under the
special rules that fix the number of vibrators:

O;
Ni=Ng|l—-——
1 sk[ @1]

e, 6]
Ny =Ny | -2 - —=—
: "[@1 @1@2} (13)

It is of interest to note by inspection of Table 2 how the frequency range of the
three-dimensional Debye function decreases with increasing asymmetry of
bonding. A final remark concerns the long-known deviation of the low-tempera-
ture heat capacities of amorphous solids from three-dimensional Debye func-
tions [36]. Plots of heat capacity of polyethylene vs. crystallinity in the tempera-
ture region from 0 to 10 K lead for perfect crystals to a constant Debye tempera-
ture. For the glassy polymer, this is not the case. Attempts have been made to in-
troduce a small number of additional low-frequency modes to account for the de-
viations. This is, however, an empirical fitting. Since these deviations occur in a
temperature region where the skeletal heat capacity is already very small (less
than 0.5 J K™ mol™ for PE below 10 K), the error caused forcing a fit to a con-
stant theta temperature does not have a significant influence on the thermody-
namic functions at higher temperature outside of a somewhat larger average er-
ror in heat capacity.

The analyses of the linear macromolecules presented in Table 2 show that the
best fit to the general Eq. (6) has often a unique result: ©,#8,=0;, precisely the
assumpfion made in the derivation of the standard Tarasov equation for poly-
mers, Eq. (11). Good examples are the data shown for crystals of PE, PET and
polymeric Se (the trigonal allotrope) in Figs 4, 6, and 7. This justifies the use of
the standard Tarasov approach to analyze the heat capacity of polymers, as done
in the ATHAS data bank [9, 12]. The new, calculated values of ©; and ©, are usu-
ally in good agreement with those which were found by trial and error with Eq.
(11}, Similar good fits could also be achicved using a neural network, trained us-

ing a wide range of computed data based on Eq. (11) [37].
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Occasional efforts to increase the number of fitting parameters by introduc-
ing different theta-temperatures for longitudinal and transverse vibrations or by
introducing variable numbers of vibrators in the different parts of the Tarasov
function do usually not give sufficient improvement of the calculations to war-
rant the extra effort [9, 36]. Naturally, knowledge of a more precise frequency
spectrum would be preferable to the models involving Tarasov functions, but suf-
ficiently accurate spectra are presently neither available by computation nor by
analysis of Raman, infrared, or neutron data. For simple, linear macromolecules
such complete computation of the vibrational heat capacity are presently only of
use for higher temperatures, usnally above about 100 K.

For some polymers, such as crystalline PP shown in Fig. 5, the standard Tara-
sov equation [Eq. {(11)]1 does not fit as well as the general Tarasov equation
[Eq. (6)]. Table 2 shows values of @,=127 K, ©;=711.8 K, and ©;=50.6 K. This
indicates that there are larger deviations from the box-like distribution of Eq.
(11). One can specnlate that the added concentration of low-frequency modes,
accounted for by the two-dimensional Debye function seen in Fig. 1C, arise from
the torsional oscillation of the —-CHs-group that was included in the skeletal vi-
brations of PP [27]. The consistency of both data sets can be seen from FEq (17}
Both treatments give similar Debye temperatures ©p. The fit of Eq. (6) gives
166 K, that of Eq. (11) 193 K.

Diamond is an example of a solid that contains strong bonds extending in all
three directions of space. Therefore, one expects that the simple Debye approxi-
mation should lead to a good description of the total heat capacity. Fitting ©p to
the experimental heat capacity yields 1880 K. The literature value for this type
of fit, given in Table 2 [7], resulted from a fit to the heat capacity at about
1000 K (=0.50@p). The result from Eq. (6} is 8,=0,#0;, as shown in Table 2. This
seems surprising, and suggests that some vibrations of the diamond lattice may
be distributed as in a two-dimensional continuum. To gain more insight, we have
constructed the approximate vibrational spectrum. The result is shown in Fig. 11
together with a normal-mode calculation from the literature [38, 39]. The initial
shape of the density of states p(Vv) is in both cases that of a three-dimensional
continuum, i.e. p(V) is proportional to the square of the frequency. The exact &
dependence extends from zero to @,. This is followed by the difference of the re-
maining ©>-dependence and a two-dimensional ®-dependence from ©; to ;.
Note that, in contrast to Fig. 1C for which ©4<©,<0,, in the diamond case the
best fit yields @:>0,=0;. Therefore, from Eq. (13) one gets: N1=0, N=—-1.60,
and N:=4.60. The two-dimensional frequency distribution D»(®3/T) in Eq. (6)
extends from O to ©; and is normalized to 4.6 moles of vibrators. On subtrac-
tion, it cancels the heat capacity contribution of the 3.0 moles of two-dimen-
sional vibrators between 0 and ©,[D:(©,/T)] and results in the negative N; and
the reduction from the D:(®3/T) contribution seen in Fig. 11. The Tarasov fit has,
thus, a minimum in its frequency distribution, similar to the normal mode calcu-
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lation. Although the details of the frequency distribution are not fully repro-
duced, a considerably better approximation of the heat capacity than the simple
Debye approximation is seen in Fig. 8. From inspection of the chemical structure
of diamond it is obvious that the high-frequency maximum in the densities of vi-
brational states results from the C—C-stretching vibrations which couple only to
a limited degree because of their close-to-90° bond angle.

Graphite is of interest to the discussion of heat capacities because of the
unique layer structure of the crystals. While the carbon atoms within the planes
of graphite are strongly bound, the adjacent planes are bound very weakly. If one
assumes that the layer structure behaves like a two-dimensional continuum, one
might expect that ©=0,#0; in the general Tarasov equation [Eq. (6)]. Such
analyses were done earlier for graphite [13] and some chalcogenides [15] using
the appropriate Tarasov function:)

Cv(sk)/NR = T(O/T.03/T) = Dy(Oy/T)~(0:/0:) [Da(@yT)-D3(@xT)]  (14)

Fitting Eq. (14) to the experimental data leads with the present software to the
characteristic temperatures ©,=0,=1878 K, and ©:=0.02 K, somewhat different
from the previous calculations (see Table 2) [13]. Equation (8) alone would ac-
cordingly also give an acceptable representation of the heat capacity data. When
using Eq. (6), we obtain ©,=2571 K, =932 K, and ®;=6 K with a much better
fit of the calculated heat capacities (see Fig. 9). A more detailed comparison with
a normal mode calculations [39] was given earlier, and indeed, there exists a
wide range of a box-like spectrum terminating at about 2400 K, in agreement
with the stronger bonds within the planes of the graphite when compared to dia-
mond.

A completely different crystalline allotrope of carbon is fullerene, Cgp. It is a
‘small’ molecule with intramolecular bonding similar to graphite. The intermo-

Diamond A Diamond
pV) ptv)
9,
0,
0 10600 2000 G 1000 200G
© [K] © [K]

Fig. 11 Frequency spectra of diamond. (A) As obtained from Eq. (6); (B) Normal mode
calculation [38]
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lecular interactions can be derived when making the Ceo molecules the motifs of
the crystal. A fit of the experimental heat capacity from4-40K with the standard
three-dimensional Debye Eq. (9) with six degrees of freedom and treating the in-
tramolecular vibrations as group vibrations, available from normal mode calcu-
lations [41], leads to ®;=50 K. This is in good agreement with the results from a
previous estimation ol ©:=53 K [29-31]. Using Eq. (6), the result for the skeletal
vibrations is ©,26,=0;, as shown in Table 2. From Eq. (13) one finds that around
1.5 normal-modes contribute to the @ distribution and the remaining 4.5 vibra-
tors are best described by a constant frequency distribution. Figure 10A shows
the improvement over the simple Debye function. Figure 10B shows the total
heat capacity with an indication of the disordering transition that leads to a plas-
tic crystal above about 260 K [32]. Equation (6) brings thus a considerable im-
provement to the low-temperature data. Between 0 and 50 K Cgo has a much
higher heat capacity than graphite and diamond, see Fig. 5in Ref. [31]. Equation
(12) shows that ©p, is lowest for Ceo (33 K) due to the large mass of the motif.
This is followed by O for graphite (243 K) which develops skeletal vibrations
within the plane, and for diamond @p increases to 1848 K hecanse of the exten-
sion of strong bonds in all directions. At higher temperature the heat capacities
of the carbon allotropes are increasingly governed by the strong chemical bonds,
of which diamond bonds are weaker than those of graphite and Ceo. At about
1000 K the heat capacity of diamond increases, accordingly, above that of the
fullerene and graphite. Ultimately, one expects that all allotropes of carbon reach
a heat capacity of 3R (Dulong Petit’s rule).

In conclusion, a fit of the general Tarasov equation [Eq. (6)] with the offered
computer program can describe heat capacities of widely-different, solid materi-
als (Figs 4-10). The presented discussion shows that the low-temperature ap-
proximation of Eq. (6) and its last term duplicate the Debye T*-law and have a
theoretically sound basis. The second and third parts of Eq. (6) are useful aver-
ages for the mid-frequency ranges of linear and planar vibrators which can im-
prove the representation of low-temperature heat capacities. With a separate ac-
counting for the group contributions, the vibrational heat capacity at constant
volume can be represented over a wide temperature range. Only up to three theta-
temperatures are needed to be fit to experimental data. The computer programs
for analysis are now easily available [ 17].
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Appendix

Introduction

Text: This is a direct printout with Matematica(TM). Comments are given in the "Text:" (inactive
cell’s brackets), The bold lines in courier font are the program (active cell's brackets), the rest are
the output printed by the program on runing. All examples are chosen to fit polyethylene. The pro-
gram can be downloaded from our web-site.

Initialization

Text: Define a function to write the output Lists o an externat file
listtoout[1_List] := Stringloin [StringReplace [ToString (NumberForm [1, 5],
{"{"->" e s e
Text: Define a function to round numbers to n digits after the decimal point
round [x_,n_] := N[Round [x 10*n)/10*n);
roundc [x_] := round [x,4];
Text: Calculate the one-, two-, and three-dimensional Debye functions in terms of the polyloga-
rithm (Jonquiere’s) functions and the Riemann zeta function [Egs (7-9), a—Q1/T, Q2/T, Q3/T,
y=Q/T, Q=Theta, E=exp].
Dint] = Expand [1/a Integrate [y*2 E*y/(E*y-1)2, {y,0,a}]]

2 @
- —t;—l+2L0g[1—Ea]+-—-~—*y—g[—~—2polL0 2 E]
a a

Ea

Dint2 = Expand [2/a*2 Integrate [y"3 EAvAEAy- 1342, [y, 0. alll

& a
., 6Log[1 — E* + 12PolyLogf2, EY] 12Polyb;>g[3, B 122e2ta[3]

&

—2a+
1-E a a a

Dint3 = Expand [3/a"3 Integrate [y*4 BAy/ (Ery-1)72, {y, 0,a}1]

.4 &
3a+ 3a - _%_*_ 12Log[1 —E* + 36PolyLogl2, E] _
1-E 3a a

_ 72PolyLogf3, E*] 4+ J2PolyLogld, EY
2 3
a a

Text: These results are used to define the Debye functions for further calculations {change ato x)
D1{x_] :=Dintl /. a->x;

D2[x_] :=Dint2 / a->x-

D3[x_]:=Dint3 /. a->x;

Text: Define names of the input (data.dat, datafe.dat, datafb.dat), auxiliary, and output (chi3d.dat,
dres.dat, dev.dat) data files, all as ASCII files. In some cases (for example in Mathematica for DOS
and M3 WINDOWS), it is necessary to specity the full path of the files (for example:
datafile="C:\math\data.dat", experimental heat capacity, two column, temperature and heat capac-
ity; datafe.dat=Einstein frequency file, datafb.dat=box frequency file, chi3d.dat is the file of chi-
square as a function of Q1 and Q3=02; dres dat is the file of results for all calculated heat capacities;
dev.dat is a file of the comparison of experimental and calculated heat capacity with the deviation
error.,

datafile = "C:\math\data.dat";

freqEfile = "C:\math\datafe.dat”;

freqBfile = "C:\math\datafb.dat";

chi3d = "C:\math\chi3d.dat";
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dresfile = "C:\math\dres.dat";
devfile = "C:\math\dev.dat”;

Read the experimental data and set up the computation parameiers

Text: Read and plot the experimental data for the temperature dependence of the heat capacity from
the input ASCTI datafile, where the data are given in two-column format [T, Cplexp)].

Cpexp = ReadList [datafile, { Number, Number}];

pepe = ListPlot [Cpexp, PlotStyle->PointSize[.015]];

35 Od
-
e .o
25 ‘.e...
20
13
10
o‘....
5 o
100 200 300 400

Text: Select the temperature range which is to be used in the calculation of the theta — temperatures
Q1,Q2and Q3

Tmin =0

Tmax = 270;

Cprange = Select [Cpexp, GreaterEqual [Tmax, First [#] [&];

Cprange = Select [Cprange, LessEqual [Tmin, First [#] [&];

Text: Number of skeletal vibrational modes

Nsk=2;

Text: Melting temperature (in Kelvin}

Tmelt = 414.6;

Text: Gas constant R and the constant A0 in the Nernst-Lindemann equation [Eqg. (1}]
Rc=8.3143;

Alc = 3.18%10M-3;

const = {R->Rc, AG->Alc, Tm->Tmelt};

Text: Read the data for the part of the group vibration spectrum approximated by the Einstein
model. The input ASCII file is freqEfile, where the data are given in two-column format: the fre-
quency in Kelvin and the number of the corresponding normal modes in moles per repeating unit
{QE, NE]. .

freqE = ReadList [freqEfile, { Number, Number}];

Text: Read the data for the part of the group vibration spectrum contributing as Cv{box). The input
ASCII file is freqBtile, where the data are given in three-column formar: the lower and the uppen
frequency of the box, and the number of the corresponding normal modes [QL, QU, N(gn)].

freqB = ReadList [freqBfile, {Number, Number, Number} ];

Calculation of the skeletal contribution to Cv

Text: Convert the experimental data for Cp to those for Cv using Nernst-Lindemann equation
fEq. (13]
Cvexp={};
For [i=1, ix=Length [Cprange], i++,

ClearAll [cveur];

cpour = Cprange[[i]1[[2]];

eq = (cveur (cpeur - cveur) ==

3R A0 Cprange[[i]1[[11)/Tm cpcur”2};
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eq=eq/. const;

sol = NSolve[eq, cvcur];

cadd = cveur /. sol [[2]];

Cvexp = Append [Cvexp, {Cprange[[i]][{1]], cadd}]

Text: Calculate and subtract the group heat capacity contributions to Cv [Egs. (2-5)]]
CvEf=0;
For [i=1, i<=Length [fregE], i++,
TE = freqE({i]][[1]];
NE = freqE[[111{[2]];
cEcur = NE Re (TE/T)*2 Exp [TE/TV/(Exp [TL/T]-1)"2;
CvEf = CvEf + cEcur
I
CvBf =0,
For |i=1, i<=Length [{freqB], i++,
QL = freqB[[i]1{[11];
QU = freqB{[i]][[2]];
NB = freqBI[i]H[3]};
cBeur =NB Re¢ QU / (QU-QL) (D1[QU/T] - QL/QU D1 [QL/T]);
CvBf = CvBf + cBeur
I;
CvBf=Re |[N[CvB{]];
Csdat = {};
For [i=1, i<=Length [Cvexp], i++,
temp = Cvexp[[i]][[2]];
cveur = Cvexp[[i1][[2}];
cvgrup = (CvEf/. T->temp) + (CvBf/. T->temp);
csdatr = cveur - cvgrup;
Csdat = Append [Csdat, {lemp, csdatr}]

Text: Plot the resulting skeletal heat capacity contribution to Cv as a function of temperature

cmax = Max[Map(Last, Csdat]l;

cmax = cmax + .07 cmax;

pd = ListPlot[Csdat, PlotRange->{ { Tmin, Tmax}, {0, cmax}},
PlotStyle->PointSize[.015]];

14 .o--.o""‘
12 .’
1

o N b oth @ O
L4

50 100 150 200 250
Fit the skeletal Cv(sk) to the Tarasov equation

Text: Define the general Tarasov [unction [Eq. (6)]

tarCs = DI[QI/T] - (Q2/Q1) (D1[Q2/T] - D2{Q2/T]) -
(Q3°2/Q1/Q2) (D2[Q3/T] - D3[Q3/T]);

tarCs = N[Nsk Rc tarCs};

tarCs = Re[Simplify[tarCs]];

Text: Define the chi-square statistical function [Eq. (10)]

chisq=0;
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For [i=1, 1 <=Length{Csdat], i++,

cdaii = Csdat [[i]];

chisg = chisq + (cdati [[2]] - (tarCs /. T-»cdati [[E]]D"2
b

Text; Minimize the chi-square function with respect to the Debye temperatures Q1,Q2and Q3

fit = FindMinimum [chisg, {Q1, 100, 600}, (Q2, 100, 600}, {Q3, 100, 600}

AccuracyGoal >10, PrecisionGoal-»10, MaxTrerations->601

{0.328011, {Q1 -> 547.457,Q2 -> 146.745, Q3 -> 146.745) }

Text: The first number above gives the minimal value of the chi-square function, which is achieved

for the listed values of Q1, Q2 and Q3. These are the values of the best fit of the experimentat data
to the Tarasov function.

fit = fit[[2]];

auxchi = chisq /. Q2->Q3;

ContourPlot [auxchi, [Q1, 500, 6003, {€)3. 50, 250].
ContourShading ->False];

T

200

N

50\ NN . /
500 520 540 560 580 600

Text: The data for the dependence of the auxiliary function auxchi {chi-square as a function of Q1
and Q3=0Q2) optionally can be written to file chi3d for further analysis.
str = OpenWrite [chi3dl;
For [i=0, 1 =20, 1++,
For [j=0,j <=20, j++,
gl =300 + 1 (600-300) /20.;
q3 = 50+ (250-50)/20.;
res = auxchi /. {Q1->ql, Q3->q3};
dat = {gl, q3.res};
WriteString [str, listtoout dat]]
11
Close {str];
Texr Plot the Turasov function with the caleulated values of Q1, Q2 and Q3, and compare it with the
experimental data for the skeletal heat capacity Cv
pf = Plot [ (tarCs /. fit), {T..1, Tmax},
DisplayFunction->Identity}];
Show [pd, pf];

14
12
10

o

L=l

50 100 150 . 200 250
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Calculation of the total heat capacity at constant pressure

Text: Calculate the total heat capacity Cv(tot) and convert it into the heat capacity Cp(calc) at con-
stant pressure using the Nernst-Lindemann cquation [Eq. (1)]

Cvtot = (tarCs /, fit) + CvEf + CvBft;

mian=1+ Sqrt[1 - 12 AOR T/Tm];

Cptot = 2 Cvtot/mian;

Cptot = Cptot /. const;

Text: Plot the total heat capacity Cp(cale) and compare it with the measured data
pep = Plot [Cptot, {T, 0.1, Tmax }, DisplayFunction->Identity];

cpmax = Max[Map[Last, Cprange]l;

cpmax = cpmax + .07 cpmax;

Show [pepe, pep, PlotRange-> { { Tmin, Tmax}, {3, cpmax}};

20 !
15
10

5

&

50 100 150 200 250
Tabulate and save the results

Text: Preparc a table of the calculated contributions to the heal capacity. Use the lemperature inte: -
val dT1 for temperatures below T1, the interval dT2 for temperatures between T1 and T2, and the
interval dT3 for temperatures between T2 and T3.

dT1 =1;

T1=10;

dT2=15;

T2 = 50;

dT3 =50,

T3 =1000;

tab = { { Temp, Skelt, Einst, Box, Group, Cv, Cp}};
tt=dT1;

While [tt < T1,

skel = rounde [(tarCs /. fit)/. T->¢t];
ein = roundc [CvEf /. T-=tt];
box =roundc [CvBf/. T >tt];
group = roundc [ein+box];
cvtt = roundc [skel+group];
cptt = roundc [Cptot /. T->tt];
tab = Append [tab, {it, skel, ein, box, group, cvtt, cptt}
tt=tt +dT1
1

tt=TIL:

While [tt < T2,
skel =roundc [ (tarCs /. fit)/. T->tt];
ein = roundc [CvEf /. T->tt];
box = roundc [CvBf /. T-»tt];
group = roundc [ein+box];
cvtt = roundc [skel+group];

J. Thermal Anal, 52, 1998



652

PYDA et al.: TARASOV EQUATION

cptt = rounde [Cptot /. T->tt};
tab = Append [tab, {tt, skel, ein, box, group, cvtt, cptt}]

B
1w=T2:
While [it <=T3,

skel = roundc [(tarCs /. fit)/. T->tt];

tt=tt+dT2

ein = rounde [CvEf /. T->tt];
box = roundc [CvBf /. T - »tt];
group = rounde [ein+box],
cvtt = roundc [skel+group],
eptt = roundc [Cptot /. T ->];
tab = Append [tab, {1t, skel, ein, box, group, cvit, cptt}]
tt=tt +dT3

I
TableForm [N[tab, 5]

Temp

ol R A O e

[ VR C T S T S e
H&ELU3B8L5

50.
100.
150.
200.
230,
300,
350.

Skelt
0.0001
0.0009
0.003
0.007
0.0137
0.0237
0.0377
0.0563
0.0801
0.1008
0.3625
0.7899
1.3396
1.9473
2.5709
3.1895
3.7945
43831
9.2496
12.164
13.757
t4.661
15.208
15.559
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Einst
0

o o o0 O C o O 0 O o o o 2 o0 @0

o]

0.0076
0.1366
0.5685
1.376%
2.5292
3.9231

Box

o o o 0 o0 0 o o o0 o - Do o Cc o O

o

0.004%
01516
0.675

1.7493
3.2079
4.8316

Group

P T e T = S = =S = B v S S v S e B e S e S e e S

o

0.0123
0.2682
1.2435
3.1262
5.7371
8.7547

Cv
0.0001
0.0009
0.003
0.007
0.0137
0.0237
0377
0.0563
0.0801
01098
0.3625
0.7899
1.3396
1.9473
2.5709
3.1895
3.7945
4.3831
92621
12,432
15,
17.787
20.945
24.314

Cp
0.0001
0.0009
0.003
0.007
0.0138
0.0238
0.0378
0.0564
0.0803
D11
0.3635
0.7929
1.346
1.9586
2.5834
3.2143
3.8277
4.4259
9.4463

12.811
15.623
18.73

22.308
26.205
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400. 15.797 5.4458 6.4499 11.8%6 27.692 30.215
450. 15.964 7.0118 7.9636 14.975 30,939 34.193
500. 16.086 8.569 9.3284 17.897 33.983 38.061
550. 16.177 10.09 10.533 20.623 36.801 41.796
600. 16.248 11.562 11.585 23.147 39.304 45.401
650. 16.303 12.978 12.497 25.475 41,779 48.804
700. 16.347 14.336 13.288 27.623 43971 52.302
750. 16.383 15.633 13.973 29.605 45989 35.652
800. 16.412 16.868 14.567 31.435 47.848 58.972
850, 16,437 18.041 15,085 33.126 40.563 62.296
900. 16.457 19.151 15.538 34.68% 51.146 65.66
950. 16.475 20.199 15.934 36.133 52.608 69.108
1000. 16.49 21,187 16.283 3747 53.96 72.698

Text: Write data from the above table into ASCII file dresfile
str = OpenWrite [dresfile];
For [i=2, i<= Length [tab], i++,

dat = wab [[i]];
WriteString {str, listtoout [dat]]
L;
Close [str];
Text: Plot the data together with all the measured values of Cp
all =Plot [{ (tarCs /. fit), (CVEf+CvBf), (Cvtot /. fit), Cptot
{T,.1, T3}, DisplayFunction->Identity];
Show [pepe, all];

1o
60
50
10

30
20
10 /

200 400 600 800 1000

Text: Compare the measured and calculated values of Cp for temperatures helow Tmax and
caiculate the standard deviation
mean =0,
stddev =0;
tabll = {{"Tewp”, "Cpexp”, "Cpeale”, "Dev [%]"} };
ndal = Length [Cprange];
For [i=1, i<=ndat, i++,
cpde = Cpexp [Till;
teor = Cptot /. T->cpdce {[1]];
devb = round [epdec [[2]], 3}-round [teor, 3],

653
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dev = devbiteor 100;

tabl = Append [tabl, {cpdc [[1]], round [cpdc [[211, 31,
round [teor, 3], round {dev, 31}];

mean -~ mcan + ¢pde [[21];

stddev = stddev + (devb)*2

tabl ]= N[tabl, 5];
TableForm [tabl]
Temp Cpexp Cpcalce Dev [%]
2 0.001 0.001 0
4 0.006 0.007 -14.204
6. 0.021 0.024 -12.621
8 0.05 0.056 —10.645
10. 0.097 0.11 -11.813
20. 0.729 0.793 | 8,071
30. 1.838 1.959 -6.178
50. 4.523 4.426 2.192
70. 6.829 6.655 2.615
90. 8.655 8.393 .722
110. 10.202 10.227 —0.244
130. 11.599 11.604 -0.043
150. 12.867 12.811 0.437
170. 14.003 13.937 0.474
190, 15.05 15.053 -0.02
210. 16.1 16.207 —0.606
230. 17.254 17.429 -1.004
250. 18.545 18.73 -(.988
270. 19.909 20.11 -0.999

Text: Write data [runs the above table into ASCII file devfile
str = OpenWrite [devfile];
For [i=2, i<= Length [tabl], i++,

dat = tabl [fill;

WriteString [str, listtoout dat])

L
Close [str];
Text: Absolutc standard deviation:
stddevv = Sqrt [stddev/ndat]
0.0830773
Text; Relative standard deviation in %:
meanv = mean/ndat;
relstddev = stddevv/meanv 100
1.38184
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Distribution of the low frequency vibrations of the solid

{Q1f, Q2f, Q3f} = {Q1, Q2, Q3} /. fit;

Text: Define the 1-, 2-, and 3-dimensional denaities of states for continuum models
rhol = 1/Q1f;

rho2 = 2i/(Q1f Q2 );

rhod = 32/Q1f Q2f Q31f);

tho [fr.] :=0;

tho [fr.] ;= (rtho3 /. f->f1) /; {fr <= Q3f};

rho [fr.] ;= (rho2 /. f->)tr /; ({fr > Q3f) && (fr <= Q21)),
rho [fr.] :—rhol /; ((fr > Q2f) & & (fr =~ Q1f));

Text: Plot the best-fit density of states

Plot {rho {x], {x, 0, (Q1{+.07 Q1D)}1;

.005%
004
003
.002
. 001

o o o o ©O

100 200 300 400 500 60O

Text: End of program,
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